Features

Operating Voltage: 3.3VAccess Time: 40 ns

Very Low Power Consumption
Active: 180 mW (Max)
Standby: 70 μW (Typ)

• Wide Temperature Range: -55°C to +125°C

• 400 Mils Width Package

• TTL Compatible Inputs and Outputs

Asynchronous

Designed on 0.35 Micron Process

Latch-up Immune

• 200 Krads capability

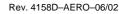
SEU LET Better Than 3 MeV

Description

The M65609E is a very low power CMOS static RAM organized as 131,072 x 8 bits.

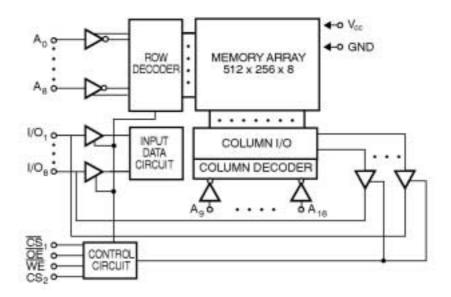
Atmel brings the solution to applications where fast computing is as mandatory as low consumption, such as aerospace electronics, portable instruments, or embarked systems.

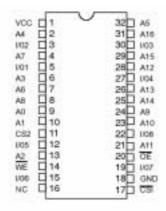
Utilizing an array of six transistors (6T) memory cells, the M65609E combines an extremely low standby supply current (Typical value = $20~\mu A$) with a fast access time at 40 ns over the full military temperature range. The high stability of the 6T cell provides excellent protection against soft errors due to noise.


The M65609E is processed according to the methods of the latest revision of the MIL STD 883 (class B or S), ESA SCC 9000 or QML.

It is produced on the same process as the MH1RT sea of gates series.

Rad. Hard 128K x 8 3.3-volt Very Low Power CMOS SRAM


M65609E



Block Diagram

Pin Configuration

32 pins Flatpack 400 MILS

Pin Description

Table 1. Pin Names

Name	Description
A0 - A16	Address Inputs
I/O1 - I/O8	Data Input/Output
¯CS₁	Chip Select 1
CS ₂	Chip Select 2
WE	Write Enable
OE	Output Enable
V _{cc}	Power
GND	Ground

Table 2. Truth Table

CS ₁	CS ₂	WE	ŌĒ	Inputs/ Outputs	Mode
Н	Х	Х	Х	Z	Deselect/ Power-down
Х	L	Х	Х	Z	Deselect/ Power-down
L	Н	Н	L	Data Out	Read
L	Н	L	Х	Data In	Write
L	Н	Н	Н	Z	Output Disable

Note: L = low, H = high, X = H or L, Z = high impedance.

Electrical Characteristics

Absolute Maximum Ratings

Supply Voltage to GND Potential0.5V + 5V
DC Input Voltage GND - 0.3V to V_{CC} + 0.3
DC Output Voltage High Z State GND - 0.3V to $\rm V_{CC}$ + 0.3
Storage Temperature65°C to + 150°C
Output Current Into Outputs (Low) 20 mA
Electro Statics Discharge Voltage > 2001V
(MIL STD 883D Method 3015.3)

*NOTE:

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Military Operating Range

Operating Voltage	Operating Temperature
3.3V ± 0.3V	-55°C to + 125°C

Recommended DC Operating Conditions

Parameter	Description	Min	Тур	Max	Unit
V _{cc}	Supply voltage	3	3.3	3.6	V
Gnd	Ground	0.0	0.0	0.0	V
V _{IL}	Input low voltage	GND - 0.3	0.0	0.8	V
V _{IH}	Input high voltage	2.2	-	V _{CC} + 0.3	V

Capacitance

Parameter	Description	Min	Тур	Max	Unit
C _{IN} ⁽¹⁾	Input low voltage	-	-	8	pF
C _{OUT} ⁽¹⁾	Output high voltage	_	_	8	pF

Note: 1. Guaranteed but not tested.

DC Parameters

DC Test Conditions

Parameter	Description	Minimum	Typical	Maximum	Unit
IIX ⁽¹⁾	Input leakage current	-1	_	1	μА
IOZ (1)	Output leakage current	-1	_	1	μΑ
VOL (2)	Output low voltage	-	-	0.4	V
VOH (3)	Output high voltage	2.4	_	-	V

- $\begin{aligned} &\text{Gnd} < \text{Vin} < V_{CC}, \text{ Gnd} < \text{Vout} < V_{CC} \text{ Output Disabled}. \\ &V_{CC} \text{ min. IOL} = 1 \text{ mA}. \\ &V_{CC} \text{ min. IOH} = \text{-0.5 mA}. \end{aligned}$
- 2.

Consumption

Symbol	Description	65609E-40	Unit	Value
ICCSB (1)	Standby supply current	2.5	mA	max
ICCSB ₁ (2)	Standby supply current	1.5	mA	max
ICCOP (3)	Dynamic operating current	50	mA	max

- 1.
- 2.
- $$\label{eq:control_control_control} \begin{split} \overline{\underline{CS}}_1 &\geq \text{VIH or } CS_2 \leq \text{VIL and } \overline{CS}_1 \leq \text{VIL}. \\ \overline{CS}_1 &\geq V_{CC} \text{ } 0.3\text{V or, } CS_2 \leq \underline{\text{Gnd}} + 0.3\text{V and } \overline{\text{CS}}_1 \leq 0.2\text{V} \\ F &= 1/T_{\text{AVAV}}, I_{\text{OUT}} = 0 \text{ mA, } \overline{\text{W}} = \overline{\text{OE}} = \text{VIH, Vin} = \underline{\text{Gnd or }} V_{CC}, V_{CC} \text{ max.} \end{split}$$

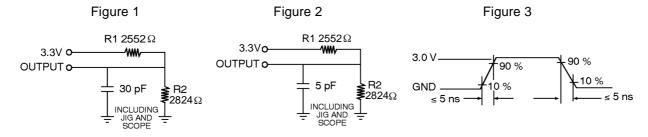
Write Cycle

Symbol	Parameter	65609E-40	Unit	Value
t _{AVAW}	Write cycle time	35	ns	min
t _{AVWL}	Address set-up time	0	ns	min
t _{AVWH}	Address valid to end of write	28	ns	min
t _{DVWH}	Data set-up time	28	ns	min
t _{E1LWH}	CS ₁ low to write end	28	ns	min
t _{E2HWH}	CS ₂ high to write end	28	ns	min
t _{WLQZ}	Write low to high Z (1)	15	ns	max
t _{WLWH}	Write pulse width	28	ns	min
t _{WHAX}	Address hold from to end of write	+3	ns	min
t _{WHDX}	Data hold time	0	ns	min
t _{WHQX}	Write high to low Z (1)	0	ns	min

Note: 1. Parameters guaranteed, not tested, with 5 pF output loading (see Section "AC Test Conditions" Figure 2).

Read Cycle

Symbol	Parameter	65609E-40	Unit	Value
t _{AVAV}	Read cycle time	40	ns	min
t _{AVQV}	Address access time	40	ns	max
t _{AVQX}	Address valid to low Z	3	ns	min
t _{E1LQV}	Chip-select ₁ access time	40	ns	max
t _{E1LQX}	CS ₁ low to low Z ⁽¹⁾	3	ns	min
t _{E1HQZ}	CS ₁ high to high Z ⁽¹⁾	15	ns	max
t _{E2HQV}	Chip-select ₂ access time	40	ns	max
t _{E2HQX}	CS ₂ high to low Z ⁽¹⁾	3	ns	min
t _{E2LQZ}	CS ₂ low to high Z ⁽¹⁾	15	ns	max
t _{GLQV}	Output Enable access time	12	ns	max
t _{GLQX}	OE low to low Z (1)	0	ns	min
t _{GHQZ}	OE high to high Z (1)	10	ns	max


Note: 1. Parameters guaranteed, not tested, with 5 pF output loading (seeSection "AC Test Conditions" Figure 2).

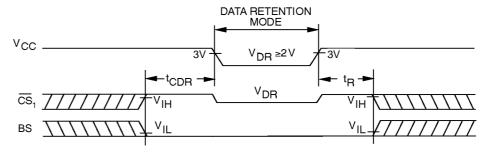
AC Parameters

AC Test Conditions

Input Pulse Levels:	.GND to 3.0V
Input Rise/Fall Times:	.5 ns
Input Timing Reference Levels:	.1.5V
Output loading IOL/IOH (see figure 1 and 2)	.+30 pF

AC Test Loads Waveforms

Equivalent to: THEVENIN EQUIVALENT

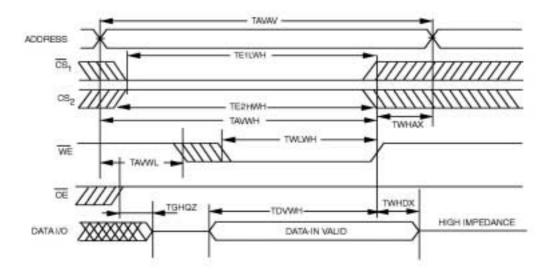


Data Retention Mode

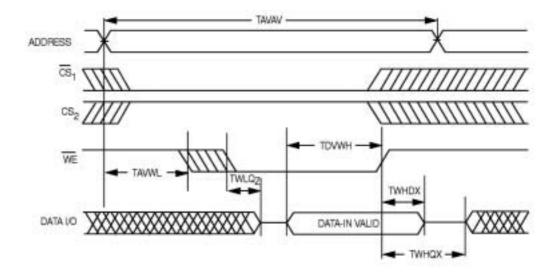
Atmel CMOS RAM's are designed with battery backup in mind. Data retention voltage and supply current are guaranteed over temperature. The following rules ensure data retention:

- 1. During data retention $\overline{\text{CS}}$ must be held high within V_{CC} to V_{CC} 0.2V or chip select BS must be held down within GND to GND +0.2V.
- 2. Output Enable (OE) should be held high to keep the RAM outputs high impedance, minimizing power dissipation.
- 3. During power-up and power-down transitions $\overline{\text{CS}}$ and $\overline{\text{OE}}$ must be kept between V_{CC} + 0.3V and 70% of V_{CC} , or with BS between GND and GND -0.3V.
- 4. The RAM can begin operation $> t_R$ ns after V_{CC} reaches the minimum operation voltages (3V).

Figure 1. Data Retention Timing

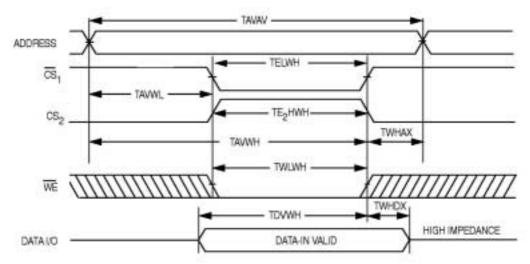

Data Retention Characteristics

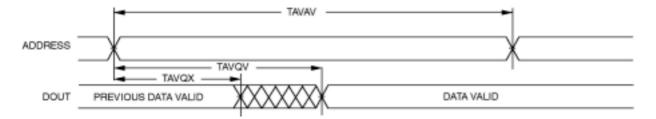
Parameter	Description	Min	Typical T _A = 25°C	Max	Unit
V _{CCDR}	V _{CC} for data retention	2.0	-	-	V
T _{CDR}	Chip deselect to data retention time	0.0	-	-	ns
t _R	Operation recovery time	t _{AVAV} ⁽¹⁾	-	-	ns
I _{CCDR1} ⁽²⁾	Data retention current at 2.0V	-	0.010	1.0	mA


Notes: 1. TAVAV = Read Cycle Time

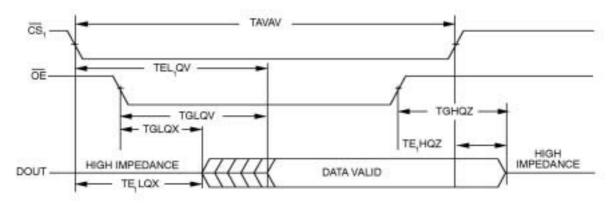
2. $\overline{\text{CS1}} = V_{\text{CC}}$ or $\text{CS2} = \overline{\text{CS1}} = \text{GND}$, $V_{\text{IN}} = \text{GND/V}_{\text{CC}}$.

Write Cycle 1. WE Controlled. OE High During Write

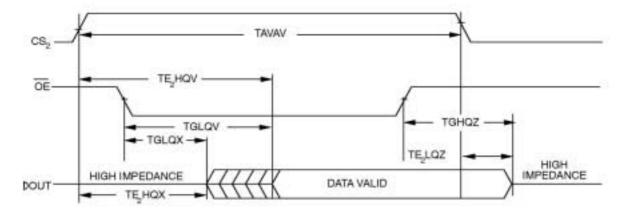

Write Cycle 2. WE Controlled. OE Low



Write Cycle 3. CS1 or CS2 Controlled⁽¹⁾

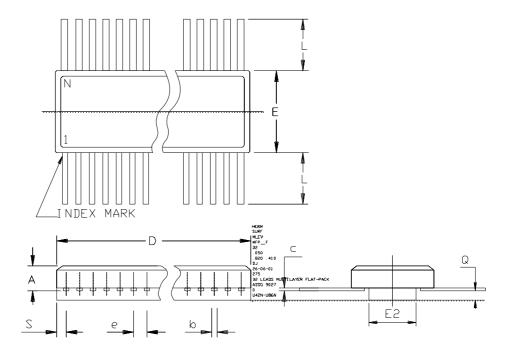


Note: 1. The internal write time of the memory is defined by the overlap of $\overline{\text{CS1}}$ LOW and CS2 HIGH and $\overline{\text{W}}$ LOW. Both signals must be activated to initiate a write and either signal can terminate a write by going in activated. The data input setup and hold timing should be referenced to the actived edge of the signal that terminates the write. Data out is high impedance if $\overline{\text{OE}} = V_{\text{IH}}$.


Read Cycle nb 1

Read Cycle nb 2

Read Cycle nb 3


Ordering Information

Part Number	Temperature Range	Speed	Package	Flow
MMDJ-65609EV-40	-55 to +125°C	40 ns	FP32.4	Standard Mil
MMDJ-65609EV-40MQ	-55 to +125°C	40 ns	FP32.4	QML Q
MMDJ-65609EV-40-E	25°C	40 ns	FP32.4	Engineering Samples
MMDJ-65609EV-40/883 ⁽¹⁾	-55 to +125°C	40 ns	FP32.4	MIL 883 B
SMDJ-65609EV-40/883 ⁽¹⁾	-55 to +125°C	40 ns	FP32.4	MIL 883 S
MM0-65609EV-40-E	25°C	40 ns	Die	Engineering Samples
MM0-65609EV-40MQ	-55 to +125°C	40 ns	Die	QML Q

Note: 1. Contact Atmel for availability.

Package Drawing

32-pin Flat Pack (400 Mils)

	ММ		I NCH	
	Min	Max	Min	Max
А	1.78	2. 72	. 070	. 107
b	0. 38	0.48	. 015	. 019
C	0.076	0.15	. 003	. 007
D	20. 62	21.03	. 81 2	. 828
E	10.26	10.57	. 404	. 416
E2	6. 96	7. 26	. 274	. 286
е	1.27 BSC		. 050 BSC	
L	7. 37	7. 87	. 290	. 31 0
Q	0. 51	0.76	. 020	. 030
S		1.14		. 045
N	32		32	

Atmel Headquarters

Corporate Headquarters

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 487-2600

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland TEL (41) 26-426-5555 FAX (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France TEL (33) 2-40-18-18-18 FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France TEL (33) 4-42-53-60-00 FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland TEL (44) 1355-803-000 FAX (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany TEL (49) 71-31-67-0 FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

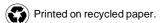
Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom

Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France TEL (33) 4-76-58-30-00 FAX (33) 4-76-58-34-80

e-mail

literature@atmel.com

Web Site


http://www.atmel.com

© Atmel Corporation 2002.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

ATMEL® is a registered trademark of Atmel.

Other terms and product names may be the trademarks of others.

